Grade 12

Exploring chemical bonding

Author(s): SEP staff

Exploring chemical bonding

Students will engage in an exploration demonstrating the Octet rule and chemical bonding using paper models of elements forming covalent and ionic compounds.

View this entire lesson plan

Antigen switching in malaria

Author(s): Mary Kate Alexander

Antigen switching in malaria

In this activity, students will model how the parasitic malaria protist Plasmodium falciparum evades the host immune response through a phenomenon called antigen switching.  Specifically, slips of paper representing malaria-infected red blood cells will be used to demonstrate how random changes in the expression of Plasmodium proteins that display on the surface of human red blood cells helps the parasite avoid destruction by the host immune system.  Students start with a single infected red blood cell with a specific surface marker protein, and from there will simulate the spread of infection through multiple generations of infection (each generation consisting of a parasite infecting a red blood cell, dividing and multiplying inside the red blood cell, then bursting to release new parasites that go on to infect new red blood cells).  Student will find that the parasite occasionally changes the type of surface marker protein expressed over several generations.  When the immune system begins destroying infected cells displaying the original surface protein, cells that have switched to expressing a different protein survive and continue to divide.

View this entire lesson plan

Mini Mystery Boxes

Author(s): SEP Coordinators

Mini Mystery Boxes

This lesson is designed to help students better understand the nature of science. It uses simple, readily available mini-mystery boxes to model how scientists study things they cannot see (see http://www.lab-aids.com/catalog.php?item=100). Scientists often study things that cannot be seen - either because they are incredibly small (inside of cells/atoms) or too far away (other galaxies). In such work, scientists must rely on indirect information. Mystery boxes – each with a small steel ball and a raised terrain inside – demonstrate this aspect of science to participants. The students will draw a model and discuss in groups what they think the box looks like inside.

View this entire lesson plan

Mystery Box

Author(s): SEP Coordinators

Mystery Box

This lesson is designed to help students better understand the nature of science. It uses a Mystery Box (see attached photos) which has a funnel at the top and a beaker underneath. When water is poured into the top funnel, colored water flows out the bottom. A turn of the funnel and then pouring in more water results in either a different colored water or no water at all. The teacher demonstrates this Mystery Box to students and challenges them to propose models of the inside of the box. The students draw models of what they think the inside of the box looks like and share and discuss these models. Students can also construct their own mystery box using cardboard boxes and other common materials. For this option, you will need an additional class period.

View this entire lesson plan

Detecting Photosynthesis- Analyzing Other Scientists' Data

Author(s): SEP Staff (Architecture of Life Course)

Detecting Photosynthesis- Analyzing Other Scientists' Data

Students will analyze the results of another scientist's experiment by examining leaves that have been exposed to different treatments, and draw conclusions about the process of photosynthesis.

View this entire lesson plan

Properties of Metals

Author(s): Philip Merksamer, Beatrice Wang, Sue Mocklin, Sarah Simson

Properties of Metals

Students will be able to see the iron filings in breakfast cereal fortified with iron and qualitatively compare the iron content between 2 different cereals.   They will also see that as part of a salt solution, some elements give off characteristic colors when placed in a flame.

View this entire lesson plan
Syndicate content