NSTA Presentation

David Mann
Water Everywhere Nano

The Donald Bren School Of Environmental Sciences and Management.
Mentors: Dr. Arturo Keller
Peng Wang
Water

• One of the single biggest applications of nanotechnology could be solving the global shortage of pure water. New York (UPI) Mar 18, 2005

• "It's the new oil of the 21st century," said F. Mark Modzelewski, managing director of nanotechnology analyst firm Lux Research in New York.
Water Uses

• "It takes an incredible 105,000 gallons of water to make a single automobile"

• and extraordinary amounts of nano pure water are used for making everything from clothing to semiconductors."
However, the problem in the developing world is not a shortage of water for high tech. industries, but rather just getting enough clean water to drink!

Photo Courtesy of CAWST
• The #2 cause of infant mortality in the world today is children drinking dirty water which results in diarrhea and dehydration!
• Pathogens in water can be nano in size and thus even clean looking water can be harmful!
Infant Mortality
Deaths/1000 Births

From Wikipedia, the free encyclopedia Deaths /1000
Children Collect Water From A Polluted Source

Photo Courtesy of CAWST
Good Water Handling Techniques

The object of my research
Biosand Filtration

- They require little or no mechanical power, chemicals or replaceable parts.
- They require minimal operator training.
- Only periodic maintenance.

Photo Courtesy of CAWST
Bio-Sand Water Filter Components

Concrete Exterior

Diffusion Plate

Wooden Lid

PVC Tubing

Sand Bed

Fine Gravel

Large Gravel

Photo Courtesy of CAWST
For My Research Used Water From The UCSB Lagoon

Image courtesy of the U.S. Geological Survey
I Used Water From The UCSB Lagoon
To test the water I collected the filtrate to see if pathogens came through.
I Tested The Water For For Total Coliforms And E.coli Bacteria

- Using “Colisure” from the IDEXX Laboratories Inc., we can get the most probable number (mpn) of Coliform/E.coli in 24 Hours.
Adding Nano Pure Water
Checking The Filtrate For E.coli
E. coli Data

<table>
<thead>
<tr>
<th>E. coli mpn</th>
<th>Time days</th>
<th>Series1</th>
<th>Series2</th>
<th>Series3</th>
<th>Series4</th>
<th>Series5</th>
<th>Series6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2419</td>
<td>1</td>
<td>21.3</td>
<td>15.25</td>
<td>38.7</td>
<td>0.5</td>
<td>49.3</td>
<td>130.5</td>
</tr>
<tr>
<td>2419</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>1.55</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>2203</td>
<td>3</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>1.5</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>2419</td>
<td>4</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>2</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>2419</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>5.35</td>
<td>99.4</td>
<td></td>
</tr>
<tr>
<td>309.7</td>
<td>6</td>
<td>3.52</td>
<td>11</td>
<td>2.6</td>
<td>0</td>
<td>3.6</td>
<td>82.1</td>
</tr>
<tr>
<td>18.65</td>
<td>7</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>4.7</td>
<td>0</td>
<td>31.9</td>
</tr>
<tr>
<td>71.95</td>
<td>8</td>
<td>27.25</td>
<td>2.05</td>
<td>0.5</td>
<td>0</td>
<td>4.7</td>
<td>38</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>6.73</td>
<td>3.66</td>
<td>5.23</td>
<td>0.9</td>
<td>8.31</td>
<td>53.3</td>
</tr>
<tr>
<td>Removal Effec</td>
<td>87.40%</td>
<td>93.10%</td>
<td>90.10%</td>
<td>98.30%</td>
<td>84.40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>control</td>
<td>20</td>
<td>Ben's 20</td>
</tr>
<tr>
<td>Lagoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. coli mpn

- **Series1**: Blue line
- **Series2**: Pink line
- **Series3**: Yellow line
- **Series4**: Cyan line
- **Series5**: Purple line
- **Series6**: Red line

- **Time days**: 1 to 8
- **Y-axis**: E. coli mpn / 100ml
- **X-axis**: Time days

- **Control**: 16
- **Lagoon**: 16
- **Tap**: 20
- **Ben's Lagoon**: 20
Total Coliforms

<table>
<thead>
<tr>
<th>Date</th>
<th>Series1</th>
<th>Series2</th>
<th>Series3</th>
<th>Series4</th>
<th>Series5</th>
<th>Series6</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>16</td>
<td>20 tap 20</td>
<td>Ben's 20</td>
<td>Lagoon</td>
<td>Date</td>
</tr>
</tbody>
</table>

| Average Removal Efficiency | 96.90% | 97.50% | 98.20% | 97.20% | 84.20% |

<table>
<thead>
<tr>
<th>Date</th>
<th>Series1</th>
<th>Series2</th>
<th>Series3</th>
<th>Series4</th>
<th>Series5</th>
<th>Series6</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>16</td>
<td>20 tap 20</td>
<td>Ben's 20</td>
<td>Lagoon</td>
<td>Date</td>
</tr>
</tbody>
</table>

Total Coliforms mpn

![Graph showing total coliforms over time](chart)

- **Series1**: Tap 20
- **Series2**: Ben's 20
- **Series3**: Lagoon

Time / days

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
Nano scale pathogens

- E. coli **bacteria** are at the micro level and **not** nano in scale.
- (2 micro meters = 2000 nano meters)
- A **virus** is at the nano scale (80-100 nm in diameter).

Source: NIAID: These high-resolution (300 dpi) images may be downloaded directly from this site. All the images, except specified ones from the World Health Organization (WHO), are in the public domain. For the public domain images, there is no copyright, no permission required, and no charge for their use.

Removal Of Nano Particles

I added some fluorescent nano particles to the water and see if they would pass through the filter.

I thought the particles would pass through the filter because of their very small size.
Fluorescent Polymer Nanospheres I Used For my Test

For testing the mechanical effectiveness of our filtration media and system I used

Green --> 30nm
Red --> 300nm
How The Fluorometer Works
Test Results:

- All nano particles were removed.
- A confirming test was run using ultraviolet visible light spectrometer. The results of that test showed a 100% Removal of the virus size nano particles.
Classroom Connection/ Curriculum Developed

• My Students work on an applied Chemistry topic at the end of the Chemistry course. The “Foul Water” laboratory activity requires them to do a sand filtration through a cup.
Size and Scale
A Teacher’s Preparatory Guide
Teacher’s Preparatory Guide

Introducing the Nanoscale

Purpose This activity is designed to familiarize students with size and scale and should be used before an activity that introduces nanotechnology.

Level Middle school and High school

Time required 30–45 minutes

Safety Information None

Advance Preparation Be sure to request an educational discount or a bulk discount when placing orders with online suppliers. If a projector is unavailable for you to use the Powerpoint slides, photocopy images of the bee, pollen, and *E. Coli* bacteria for distribution to students.

Materials per student group
- steel retractable tape measure
- masking tape
- pencil
Standards Addressed

NCTM Standards 3–5
- understand the place-value structure of the base-ten number system and be able to represent and compare whole numbers and decimals
- explore numbers less than 0 by extending the number line and through familiar applications

NCTM Standards 6–9
- compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line
- develop an understanding of large numbers and recognize and appropriately use exponential, scientific, and calculator notation

National Science Education Standards

Middle School Content Standards
Standard A : Ability to do scientific inquiry
Standard B: Properties and changes of properties in matter
Standard G: Nature of science

Guided Dialog Show these images to the class for the next dialog:

 a bee pollen grains on a bee’s leg a pollen grain pores on pollen

How small is small? It depends on how small you are. A bee is small to us—it’s only about 12 mm long. You can squish one with the tip of your finger—if you are careful!
But a bee is big when compared to a pollen grain—thousands of them can be stuck to the leg of a bee!

A bee is considered to be at the macro- or “large” scale. An individual pollen grain is about 30 µm (micrometers) in diameter, and this is at the microscale. This is pretty small, but can we think smaller? What about the size of the pore on the pollen grain? Individual pores on the surface of this pollen grain are only about 1 µm in diameter. Are we talking small yet? Yes, but we are still not at the nanoscale! The nanoscale is a billionth of a meter and is 100 times smaller than a pore on a pollen grain.

How can we express the size and scale of a bee and pollen grain? Sure, we can do it using scientific notation, but what if you did research on the habits of bees and were telling your colleagues about it?
It can be easier to express the magnitude of numbers with words or symbols instead of in scientific notation. These words represent powers of ten and are typically applied as prefixes to units of measurement. Some common prefixes are below:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Power of ten</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000 000 000 000</td>
<td>10^{12}</td>
<td>tera-</td>
<td>T</td>
<td>terahertz</td>
</tr>
<tr>
<td>1 000 000 000</td>
<td>10^9</td>
<td>giga-</td>
<td>G</td>
<td>gigabyte</td>
</tr>
<tr>
<td>1 000</td>
<td>10^3</td>
<td>kilo-</td>
<td>k</td>
<td>kilogram</td>
</tr>
<tr>
<td>100</td>
<td>10^2</td>
<td>hecto-</td>
<td>h</td>
<td>hectometer</td>
</tr>
<tr>
<td>10</td>
<td>10^1</td>
<td>deka-</td>
<td>da</td>
<td>dekagram</td>
</tr>
<tr>
<td>0.1</td>
<td>10^{-1}</td>
<td>deci-</td>
<td>d</td>
<td>deciliter</td>
</tr>
<tr>
<td>0.01</td>
<td>10^{-2}</td>
<td>centi-</td>
<td>c</td>
<td>centimeter</td>
</tr>
<tr>
<td>0.001</td>
<td>10^{-3}</td>
<td>milli-</td>
<td>m</td>
<td>milliliter</td>
</tr>
<tr>
<td>0.000 001</td>
<td>10^{-6}</td>
<td>micro-</td>
<td>μ</td>
<td>micrometer</td>
</tr>
<tr>
<td>0.000 000 001</td>
<td>10^{-9}</td>
<td>nano-</td>
<td>n</td>
<td>nanometer</td>
</tr>
<tr>
<td>0.000 000 000 001</td>
<td>10^{-12}</td>
<td>pico-</td>
<td>p</td>
<td>picogram</td>
</tr>
<tr>
<td>0.000 000 000 000 001</td>
<td>10^{-15}</td>
<td>femto-</td>
<td>f</td>
<td>femtosecond</td>
</tr>
<tr>
<td>0.000 000 000 000 000 001</td>
<td>10^{-18}</td>
<td>atto-</td>
<td>a</td>
<td>attomole</td>
</tr>
</tbody>
</table>

Metric Conversions

The metric unit chosen depends on the size of the object that is being measured. SI units can be converted to another unit by simply moving the decimal to increase or decrease the size of the number. Then the appropriate prefix for the new unit must be given.
Chalkboard practice
Example: Convert 1.23 millimeters (mm) to nanometers (nm)

\[1.23 \text{ mm} \times 1.0 \times 10^6 \text{ nm} = 1,230,000 \text{ nm or } 1.23 \times 10^6 \text{ nm} \]

Another way to think about it:
\[1.23 \text{ mm} = 1.23 \times 10^{-3} \text{ m} = 0.00123 \text{ m} \]

Change 0.00123 m to nm: \(0.00123 \times 10^9 \text{ nm} \)

Ask students to try these conversions on their own:
1. What would be the length of your pencil in nanometers if it were 18.5 cm long? \(1 \text{ cm} = 1 \times 10^7 \text{ nm}, \text{ so } 18.5 \times 10^7 \text{ nm, or } 1.85 \times 10^8 \text{ nm} \)
2. If an ant is 1 cm long, what would be its length in nanometers? \(1 \times 10^7 \text{ nm} \)

Quick Activity
Group students into pairs. Ask them to measure the height of their partner.
Ask: How tall are you in cm? In \(\mu \text{m} \)? In nm?

Example answer: A 1.8 m tall person would be 180 cm, \(1.8 \times 10^6 \mu \text{m}, \text{ and } 1.8 \times 10^9 \text{ nm.} \)
Introducing the Nanoscale: Metric Conversion Problems

Below are some interesting facts that you need to convert into nano units.

1. The world’s smallest newspaper was made in the country of Brazil. The paper measured \(2.5 \times 3.5\) cm. What would this be in nanometers?
 \(2.5 \times 10^7\) nm by \(3.5 \times 10^7\) nm

2. So you think you think everybody is looking at you! Check this out:
The tallest person in the world lives in Mongolia. He went through a growth spurt when he was a teenager and he is now a total of \(2\) m \(36.1\) cm tall. How many nanometers is this?
 \(2.361 \times 10^9\) nm

3. Ever hear of Gene Simmons and the band Kiss? Mr. Simmons was the guy with the habit of sticking out his long tongue, (his long, long tongue)! In fact, his tongue is about \(8.75\) cm long. How many nanometers would this be?
 \(8.75 \times 10^7\) nm

4. Want to run with the “Big Dogs”? Well, this big dog is only \(13.8\) cm tall. He is the world’s smallest dog. His name is Danka and he is a long-haired Chihuahua. How tall is Danka in nanometers? Woof!
 \(1.38 \times 10^8\) nm
5. Did you know that the world record for the highest jump by a dog was 167.6 cm! That’s almost as tall as the average man! The dog was a greyhound named Cinderella and she did it at the Purina Dog Chow Incredible Dog Challenge in 2003. How many nanometers did Cinderella jump?

\[1.676 \times 10^9 \text{ nm} \]

6. Say what? I didn’t hear you, my ears got in the way! That is because my name is Nipper’s Geronimo and I am a rabbit with the world’s longest ears. No joke! This bunny from Bakersfield, California, USA has a 79 cm long ear! How many nanometers is this?

\[7.9 \times 10^8 \text{ nm} \]

7. This goat has bragging rights! With the world’s longest horns at 132 cm from tip-to-tip, Uncle Sam (the goat’s name), would have a hard time getting through the door. How many nanometers is this?

\[1.32 \times 10^6 \text{ nm} \]

8. This cell phone is gigantic! As the world’s largest cell phone, it is a whopping 2.05 \times 0.83 \times 0.45 meters. Definitely not your typical cell, but what would these dimensions be in nanometers?

\[2.05 \times 10^6 \text{ nm} \times 0.83 \times 10^6 \text{ nm} \times 0.45 \times 10^6 \text{ nm} \]

9. A professional stuntman held his breath for 2 min 38 s—while on fire! This stunt set the world record for a full-body burn without oxygen supplies. How many nanoseconds did the stuntman hold his breath?

\[1.58 \times 10^{11} \text{ ns} \]
Water Filtration and Nanoparticles
A Teacher’s Preparatory Guide
Teacher’s Preparatory Guide

Water Filtration and Nanoparticles

Purpose This activity—in which students make a sand filtration device—is designed to be used as an extension to classroom activities related to treating foul water for consumption. Ideally, this activity should be done after students have been introduced to the concept of nanoscale and after the lab titled *What Affects the Purity of Water?* This class project produces a point-of-use filtration system for needy families that do not have an adequate supply of clean potable water (as in some third-world countries). Research has shown that removal of water-borne pathogens at the micro- and nanoscale, can greatly improve the health of infants in developing countries.

Level Middle school and High school

Time required Two 50-minute class periods or one 90-minute block day

Safety Information Safety goggles should be worn while cutting PVC pipe and drilling holes. Keep electrical devices far from water to avoid risk of electrical shock. Wear protective gloves to avoid contact with glue and primer. Use glue and primer in a well-ventilated area to avoid prolonged exposure to fumes. Use care when lifting bags of gravel and sand—be sure to lift with the legs while keeping a straight back (do NOT lift with your back). Use team lifting practices when lifting heavy objects. Use care when cleaning and working with knife and clipper blades—they present a cutting hazard.
Advance Preparation Purchase PVC pipes from an agriculture/irrigation supply store. Sand and pea gravel should be pre-washed and can be purchased from a landscape company or hardware store. Materials for testing the bacteria level in water can be found at www.hach.com/ or through Lifewater International (888)543-3426. Alcohol prep pads (those used to prepare the skin for an injection) can be purchased from a pharmacy (we used alcohol swabs from B-D Consumer Health Care brand, purchased at www.riteaid.com). Other materials can be bought at a hardware store or at a home and builder’s warehouse. Collect enough 1 L bottles for each student group to have one and cut the top off of each bottle. Finally, be sure to conduct this activity when the outside/room temperature is 75°F/24°C or higher to allow the bacteria to grow.

Materials per class

- 12-inch (inside diameter) PVC pipe, cut to 36 inches long
- approximately 4 feet of plastic 3/8 inch outside diameter (1/4 inch inside diameter) hose is needed as an outlet for the filter
- Four plastic electrical ties, each 24 inches long
- a pint (4 fl. oz.) of PVC cement and primer
- a tube (2.8 Fl. Oz.) of 100% silicone clear DAP aquarium sealer
- 3/8 inch drill bit and drill
• a bucket of pea gravel
• a 100-pound sack of #16 pre-washed sand
• a dolly or hand truck
• a table that is taller than 36 inches (such as a lab table)

Materials per student group
• pathoscreen media, 100 mL 50/pack, Hach part #26106-96
• sterile whirl-pak bag with dechlorinating agent, Hach part # 2075333
• antiseptic alcohol prep pads (also called alcohol swabs/wipes)
• permanent marker (preferably with a thin writing tip)
• a 1 L bottle, with the top cut off
National Science Education Content Standards

Content Standard A
- Abilities necessary to do scientific inquiry
- Understanding scientific inquiry

Content Standard B
- Structure and properties of matter

Content Standard C
- Interdependence of organisms

Content Standard E
- Abilities of technological design
- Understandings about science and technology

Content Standard G
- Science as a human endeavor
- Nature of scientific knowledge

Content Standard F
- Personal and community health
- Natural resources
- Environmental quality
- Natural and human-induced hazards
- Science and technology in local, national, and global challenges

Did You Know?
“A child dies every 15 seconds from diarrhoea, caused largely by unsafe water and inadequate sanitation.”
—World Health Organization
Source: http://www.undp.org/water/
http://www.who.int/dg/lee/speeches/2005/ministerialmeeting_healthande
vironment/en/index16.html

“Currently, over 1 billion people lack access to water and over 2.4 billion lack access to basic sanitation.”
—United Nations Development Programme
Source: http://www.undp.org/water/
Find out more about the global water crisis at the links

Background Information
Nanotechnology could lead to advanced water-filtering membranes that may purify even the worst wastewater. Progress is being made in the research of anti-bacterial and anti-viral filters. For example, raw sewage could be poured in one of these advanced filters and come out with clear water on the other end.
Teaching Strategies
Before this activity, review the concepts of size and scale. Build on the inquiry-based interlude by asking the questions below: Students may work in groups of 4–5 students, with each group building a sand filter or it can be built as a class project for demonstration or for use in a third-world community in need.
March 1, 2007

Dear Team:

Thank you for your recommendation to get a filter for the stream on our ranch.

To save money, I would like to have you build a filter that will purify the water in the stream so that people on my ranch can drink the water.

Also, please test the filtered water to make sure that it is safe to drink.

Sincerely,

Manuel Ranchero
Ranch Owner
Rancho Felicidad

Guided Dialog

What problems might you have with using sand to remove nano-sized objects from the water? The space between grains of sand might be large enough to allow nanoparticles to pass through the filter.

What materials would you need to build a large sand filter? Answers will vary. Example answers: PVC pipe, saw, PVC cap, PVC cement and primer, drill, plastic tubing, aquarium sealer, electrical ties, sand, and gravel!

What might make a sand filter difficult to build? Example answer: cutting the pipe, drilling the hole, gluing the cap, sealing the tube.

Some scientists have developed a way to clean water using bio-sand filters. They use a method to clean drinking water from creeks, streams, and rivers that may have bacteria in it. Define bacteria. A bacterium is a type of germ that is very small but can be seen easily under a microscope.

What if a bio-layer formed at the top of the sand filter that would eat nano-sized particles. What would you call this?
Have students look at the picture of *E. coli*. Explain that these bacteria have sized that are microscale and are NOT nanoscale.

Left: Scanning electron microscope image of *Escherichia coli*, grown in culture and adhered to a cover slip.
Credit: Rocky Mountain Laboratories, NIAID, NIH
Source: NIAID: These high-resolution (300 dpi) images may be downloaded directly from this site. All the images, except specified ones from the World Health Organization (WHO), are in the public domain. For the public domain images, there is no copyright, no permission required, and no charge for their use.

Power Point Slides

R different sources of water pollution from the picture. *Sample answers: bathing and washing in the river, trash and garbage dumped beside the river, people and animals defecating along the river, animal feces can be washed into the well, stored water is not protected from animals or industrial waste*

Ask: What is a bio-sand filter made of? How could we duplicate it?
Bio-sand Water Filtration

How does it work?

4 Processes of Filtration

1. Predation
2. Natural Death
3. Adsorption
4. Mechanical Trapping

Bio-sand Water Filtration

How does it happen?

- Water is poured into the top of the filter.
Bio-sand Water Filtration

How does it happen?

2. The Diffusion Plate slows the force of the water.

3. Water then travels slowly into the biological layer at the top of the sand.

4. Water continues slowly through the sand bed.

5. After passing through both levels of gravel, the water is propelled up and out.
Question Will the filter remove disease-causing bacteria?

Make a Prediction Answers will vary, but should have a logical argument either for or against the filter. Example answer: No, the spaces between the sand particles will still allow nanoscale particles through.
Procedure—Part II: Making the Filter

1. In a well-ventilated area, paint primer around the inside rim of the PVC cap. Be sure to cover the entire inside surface of the cap. (Use the brush that comes with the primer.)
2. Measure the height of the cap. Paint primer on the outside of the PVC pipe to the same depth as the height of the cap.
3. Allow the primer to dry by following the instructions on the can.
4. Apply the PVC cement around the inside rim of the cap.
5. Place the PVC cap on one end of the PVC tube and firmly tap it down with a rubber mallet or your hands to secure it in place.
6. Allow the cement to dry by following the instructions on the cement.
7. Drill a 3/8-inch hole in the cap for a 3/8-inch plastic hose. Be sure to wear goggles as you drill to protect your eyes from projectiles.
8. Insert 3/8-inch hose into the hole.
9. Apply silicone aquarium sealer around the outside of the plastic hose so that water will not leak out. Then, ask someone with really long arms to apply the sealant to the inside of the hole.
Safety Alert!

Wear protective gloves while using primer and cement.

Work in a well-ventilated area.
10. Use plastic electrical ties to hold up the 3/8 inch hose along the outside of the bio-sand filter.

11. Pour water through the PVC pipe to test whether the system leaks. Water should only exit via the tube.

12. If the system has any leaks, mark the leakage with a permanent parker and allow it to fully dry. Then apply aquarium sealer to the marked areas.

13. Repeat steps 11–12, until the system has no leaks.
14. Add 1/4-inch gravel to the bottom of the bio-sand filter to a depth of 2 inches making sure it covers the plastic hose at the bottom of the filter.
15. Place the bag of clean #16 grit sand atop a table. Place the PVC pipe below it, with the capped end touching the floor. Gently scoop the sand into the filter. Continue adding sand until it is 2 inches below to top (for a water reservoir).

16. Take the filter outside. Add a bucket of water to flush the system to ensure that it is working.
Procedure—Part II: Testing the Filter

1. Wearing protective gloves, remove an alcohol swab from the foil pouch and use it to carefully clean the knife or nail clipper blade.
2. Place the swab atop a flat surface.
3. Use the knife or clipper to open the pathoscreen media and carefully place the media on top of the opened alcohol wipe. Make sure that the contents do not spill out!
4. Use another alcohol wipe to wipe the tube (outside and just on the edge of the inside, if possible) where the water will exit. Lay the tube on top of the wipe to keep the tube clean and free of contamination.
5. Label the sterile bag with your name, date, and time.
6. Open the sterile bag by tearing off the top of the bag along the perforation. Be sure NOT to contaminate the inside of the bag. Leave the small tablet of sodium thiosulfate in the bag—it will remove chlorine from the water.
7. Hold the bag by the wireless white strips at the top and pull. The bag will open.
8. Let the water run for about 30 s.
9. Fill the bag to the 100 mL line with the water. If the bag fills above this line, pour out the excess water.
10. Add the pathoscreen media powder to the bag containing your water sample—this nutrient will help any bacteria present to quickly multiply.

Materials
- knife or nail clipper
- pathoscreen media
- sterile bag with dechlorinating agent
- 2 antiseptic alcohol preparation pads or alcohol swabs/wipes
- permanent marker
- 1 L plastic bottle, with the top removed

Safety Tip
Use care when cleaning and using blades—they are sharp and can cut.
and allow you to detect their presence. Be sure to add all of the powder to the bag.

11. Pull the white wire strips taut to close the bag.
12. Firmly hold the wire strips, and carefully but quickly flip the bag 3 times so that the bag folds tightly over the wire to create a tight seal. Fold the wire strips over to seal the bag, as shown in the image at right.
13. Observe the contents of the bag. If the sodium thiosulfate has not fully dissolved, gently shake the bag. Prevent water from leaking out by not squeezing the bag.
14. Place the bag in the 1 L bottle with the top removed for safe transport. Store on a level surface where it will not tip.
15. Record the color of the bag, the date, and time in the table below.

16. After 24 hours, observe the sample bag and record your observations in the table below. What color is the sample? If it is yellow, does it have black spots?

17. After 48 hours, repeat step 16.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description at 24 hr</th>
<th>Description at 48 hr</th>
<th>Is bacteria present?</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>black</td>
<td>black</td>
<td>yes</td>
<td>lots of bacteria in initial sample or these bacteria quickly grow</td>
</tr>
<tr>
<td>2</td>
<td>yellowish/cloudy</td>
<td>yellow with black precipitate or black dots</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>3</td>
<td>yellow</td>
<td>black</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>4</td>
<td>yellow</td>
<td>yellow with black precipitate or black dots</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>5</td>
<td>yellow</td>
<td>yellow</td>
<td>no</td>
<td>bacteria not detectable; water may be safe to drink</td>
</tr>
</tbody>
</table>
Disposal

18. Wear a pair of protective waterproof disposable gloves.
19. Remove the sample from the transport bottle and have a lab partner hold the bag upright as you fill the 1 L transport bottle halfway with tap water.
20. Add bleach to the transport bottle until it is ¾ full. Gently shake the bottle to mix the bleach with the water.
21. Place the sample bag in the water bottle and push it down to submerge the bag.
22. Use the straight pin to puncture the bottom corner of the bag. Allow the contents of the bag to empty into the bottle.
23. Flush the fluid contents of the bottle. Do NOT flush the bag.
24. Repeat steps 21–23 to disinfect the inside of the bottle and the bag. You

Safety Alert!
The contents of the bag may contain disease-causing bacteria that could cause diarrhea or other illness. Wear gloves and use caution at all times during disposal.
may open the bag and rinse the inside of the bag.

25. Dispose of the bag, pin, bottle, and gloves in a way that they cannot be recovered, such as placing them in a biohazard bin. Pins should be disposed of in a closed cardboard box before placing them in a biohazard bin. Be sure that pins do not go directly in a plastic bag—they can puncture the bag.

26. Use the spray bottle containing bleach water to disinfect any surfaces that might have come in contact with the sample.

Analysis

27. If the water sample in your bag is black or has black dots in it, then bacteria has been detected. If it is yellow with no trace of black, bacteria has not been detected. Is bacteria present in your samples? For each sample, record your answer in the table on the previous page.

28. Why did you clean the cutting tools and water tube before testing the water for bacteria? *Dirty tools or water tube could contaminate the water sample.*

29. Why must the sample be at room temperature for 24 hours before you can expect a color change? *It takes time for bacteria to multiply and grow to detectable levels.*
30. How might doing this experiment on a very cold day affect the results? *Bacteria would not grow as quickly or would not grow at all to be at detectable levels. So, the bag might appear yellow even when bacteria is present.*

31. How might doing this experiment on a very hot day (over 90°F) affect the results? *The heat might kill bacteria present and result in a negative test, which would be inaccurate.*

Conclusion
32. In your data table, notice the trend of color throughout the period of time that you tested. What conclusions can you draw about how quickly or slowly the bacteria grew? What can you conclude about how much bacteria were initially present in the sample? Record these conclusions in the data table.

33. Is the filtered water safe for human consumption? *Yes, my water was safe for human consumption.*

34. What recommendations would you make to improve the filter? *Answers will vary.*

35. Suppose your did not work well. What could you recommend to the people who work on that ranch that they do while you test another filter? Explain your answer. *(Hint: review your answer in step 31.)* *I would recommend that people boil the water, because the high temperature is likely to kill disease-causing bacteria before drinking.*
36. Across the Disciplines: Bonus Project: Researchers who develop filtration devices often test for what particles are filtered out. Write a 2-page paper describing one of the following:

- techniques (light, chemicals, etc.) used to identify microscale and nanoscale objects filtered from water
- tools used to see nanoscale objects that are often found in water
- various nanofiltration devices and how they differ from microfilter
- how biolayers assist with filtration

37. Inquiry Extension: Using the information from your project in step 36, brainstorm a procedure on how you could test the size of particles that are filtered from the water.
RET Extension
Water Purity
A Teacher’s Preparatory Guide
Teacher’s Preparatory Guide

What Affects the Purity of Water?

Purpose This activity—in which students test a local water supply—is designed to be used as an extension to classroom activities related to treating foul water for consumption. This activity should be done after students have been introduced to the concept of nanoscale and before the *Water Filtration and Nanoparticles* lab. Students should have a good grasp of how to convert the size of objects to the nanometer scale.

Level Middle school and High school

Time required Two 50-minute class periods or one 90-minute block day

Safety Information Use care when collecting water samples from natural bodies of water—do not collect water during unsafe conditions, as during high winds or stormy conditions. Wear protective gloves to avoid contact with potential pathogens in the water sample. Use care when cleaning and working with knife and clipper blades—they present a cutting hazard.
Advance Preparation Locate a natural body of water near your school and arrange for a field trip for collection, or collect the water beforehand. If collecting the water beforehand, be sure to use a container that is sterile (such as a very large water bottle, however you should dispose of the clean water just before collecting your sample for more accurate data collection. Do not use bleach to sterilize the container that you use—even small amounts could kill bacteria you are testing for in your sample water. Materials for testing the bacteria level in water can be found at www.hach.com or through Lifewater International (888)543-3426. Alcohol prep pads (those used to prepare the skin for an injection) can be purchased from a pharmacy (we used alcohol swabs from B-D Consumer Health Care brand, purchased at www.riteaid.com). Collect enough 1 L bottles for each student group to have one and cut the top off of each bottle. Conduct this activity when the outside/room temperature is 75°F–95°F to allow the bacteria to grow.

Materials per student group

- pathoscreen media, 100 mL 50/pack, Hach part #26106-96
- sterile whirl-pak bag with dechlorinating agent, Hach part# #2075333
- antiseptic alcohol prep pads (also called alcohol swabs/wipes)
- permanent marker (preferably with a thin writing tip)
- a 1 L bottle, with the top cut off

National Science Education Content Standards
Content Standard A
- Abilities necessary to do scientific inquiry
Teacher’s Preparatory Guide

- Understanding scientific inquiry
 Content Standard B
 - Structure and properties of matter
 Content Standard C
 - Interdependence of organisms
 Content Standard E
 - Abilities of technological design
 - Understandings about science and technology
 Content Standard G
 - Science as a human endeavor
 - Nature of scientific knowledge
 Content Standard F
 - Personal and community health
 - Natural resources
 - Environmental quality
 - Natural and human-induced hazards
 - Science and technology in local, national, and global challenges

Teaching Strategies Before this activity, review the concepts of size and scale. Students may work in groups of 3–5 students.

Did You Know?
“A child dies every 15 seconds from diarrhoea, caused largely by unsafe water and inadequate sanitation.”
—World Health Organization
Source: http://www.undp.org/water/
http://www.who.int/dg/lecspeeches/2005/ministerialmeeting_healthande
vironment/en/index16.html

“Currently, over 1 billion people lack access to water and over 2.4 billion lack access to basic sanitation.”
—United Nations Development Programme

Source: http://www.undp.org/water/
Find out more about the global water crisis at the links.
Guided Dialog Use the guided dialog below to introduce this activity to students:

- Where might you find water that has bacteria? *Answers will vary. Examples: a pet’s water bowl, a mud puddle, the kitchen sink*

- If you had to survive in your house for three days after an earthquake, what device(s) in your home would probably have a reservoir of clean potable (drinkable) water? *The water heater and the toilet reservoir.*

- If you had to collect water from a river, creek or pond, how could you make sure the water was safe to drink? *boil it or pour water through sand to filter large particles*
Power Point Slides
Have students look at the picture of *E. coli*. Explain that these bacteria have sizes that are microscale and are NOT nanoscale.

Above: Scanning electron microscope image of *Escherichia coli*, grown in culture and adhered to a cover slip.

Credit: Rocky Mountain Laboratories, NIAID, NIH

Source: NIAID: These high-resolution (300 dpi) images may be downloaded directly from this site. All the images, except specified ones from the World Health Organization (WHO), are in the public domain. For the public domain images, there is no copyright, no permission required, and no charge for their use.

Ask students to find different sources of water pollution from the picture. Sample answers: bathing and washing in the river, trash and garbage dumped beside the river, people and animals defecating along the river, animal feces can be washed into the well, stored water is not protected from animals or industrial waste.
What Affects the Purity of Water?

Student Worksheet with Answer Key

A ranch owner in Mexico is concerned that some of the people who live and work on his ranch have been getting sick. He suspects that the stream that serves as the water supply may be contaminated with disease-causing bacteria. Your team has been hired to investigate the stream to see whether the water is safe to drink and to make recommendations for further action if the water is unsafe.

Question How can you test whether this stream has disease-causing bacteria?

Make a Prediction Sample Prediction: If the water in the sample bag changes from yellow to black, the water coming out or the filter is not clean. If the water does not change color after 48 hours, the water is probably free of disease-causing bacteria.
Materials
- knife or nail clipper
- pathoscreen media
- sterile bag with dechlorinating agent
- 2 antiseptic alcohol preparation pads or alcohol swabs/wipes
- permanent marker
- 1 L plastic bottle, with the top removed

Procedure
1. Wearing protective gloves, remove an alcohol swab from the foil pouch and use it to carefully clean the knife or nail clipper blade.
2. Place the swab atop a flat surface.
3. Use the knife or clipper to open the pathoscreen media and carefully place the media on top of the opened alcohol wipe. Make sure that the contents do not spill out!
4. Label the sterile bag with your name, date, and time.
5. Open the sterile bag by tearing off the top of the bag along the perforation. Be sure NOT to contaminate the inside of the bag. Leave the small tablet of sodium thiosulfate in the bag—it will remove any chlorine from the water.
6. Hold the bag by the wireless white strips at the top and pull. The bag will open.
7. If the water can flow, let the water run for about 30 s before collecting water.
8. Fill the bag to the 100 mL line with the water. If the bag fills above this line, pour out the excess water.
9. Add the pathoscreen media powder to the bag containing your water sample—this nutrient will help any bacteria present to quickly multiply and allow you to detect their presence. Be sure to add all of the powder to the bag.

Safety Tip
Use care when cleaning and using blades—they are sharp and can cut.
10. Pull the white wire strips taut to close the bag.

11. Firmly hold the wire strips, and carefully but quickly flip the bag 3 times so that the bag folds tightly over the wire to create a tight seal. Fold the wire strips over to seal the bag, as shown in the image at right.

12. Observe the contents of the bag. If the sodium thiosulfate has not fully dissolved, gently shake the bag. Prevent water from leaking out by not squeezing the bag.

13. Place the bag in the 1 L bottle with the top removed for safe transport. Store on a level surface where it will not tip.
Data
14. Record the color of the bag, the date, and time in the table below.
15. After 24 hours, observe the sample bag and record your observations in the table below. What color is the sample? If it is yellow, does it have black spots?

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description at 24 hr</th>
<th>Description at 48 hr</th>
<th>Is bacteria present?</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>black</td>
<td>black</td>
<td>yes</td>
<td>lots of bacteria in initial sample or these bacteria quickly grow</td>
</tr>
<tr>
<td>2</td>
<td>yellowish/cloudy</td>
<td>yellow with black precipitate or black dots</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>3</td>
<td>yellow</td>
<td>black</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>4</td>
<td>yellow</td>
<td>yellow with black precipitate or black dots</td>
<td>yes</td>
<td>not many bacteria in initial sample or these bacteria slowly grow</td>
</tr>
<tr>
<td>5</td>
<td>yellow</td>
<td>yellow</td>
<td>no</td>
<td>bacteria not detectable; water may be safe to drink</td>
</tr>
</tbody>
</table>
Teacher’s Preparatory Guide

Materials for disposal
- bucket
- bleach
- water
- straight pin
- spray bottle containing bleach and water in a 1:10 ratio
- paper towels

Disposal
17. Wear a pair of protective waterproof disposable gloves.
18. Remove the sample from the transport bottle and have a lab partner hold the bag upright as you fill the 1 L transport bottle halfway with tap water.
19. Add bleach to the transport bottle until it is ¾ full. Gently shake the bottle to mix the bleach with the water.
20. Place the sample bag in the water bottle and push it down to submerge the bag.
21. Use the straight pin to puncture the bottom corner of the bag. Allow the contents of the bag to empty into the bottle.
22. Flush the fluid contents of the bottle. Do NOT flush the bag.
23. Repeat steps 20–22 to disinfect the inside of the bottle and the bag. You may open the bag and rinse the inside of the bag.
24. Dispose of the bag, pin, bottle, and gloves in a way that they cannot be recovered, such as placing them in a biohazard bin. Pins should be disposed of in a closed cardboard box before placing them in a biohazard bin. Be sure that pins do not go directly in a plastic bag—they can puncture the bag.
25. Use the spray bottle containing bleach water to disinfect any surfaces that might have come in contact with the sample.

Safety Alert!
The contents of the bag may contain disease-causing bacteria that could cause diarrhea or other illness. Wear gloves and use caution at all times during disposal.
Analysis

26. If the water sample in your bag is black or has black dots in it, then bacteria has been detected. If it is yellow with no trace of black, bacteria has not been detected. Is bacteria present in your samples? For each sample, record your answer in the table on the previous page.

27. Why was it important to leave the sodium thiosulfate in the bag? Sodium

\textit{thiosulfate removes any chlorine that may be in the sample water. This allows any} \textit{bacteria that are present to grow.}
28. Why did you clean the cutting tools before testing the water for bacteria? Dirty tools could contaminate the water sample.

29. If you hadn’t cleaned the tools, how would it have affected your results? It might indicate bacteria is present in the water when they are really from the blade.

30. Why do you think the sample needs to be at room temperature for 24 hours before you can expect a color change? It takes time for bacteria to multiply and grow to detectable levels.

31. How might doing this experiment on a very cold day affect the results? Bacteria would not grow as quickly or would not grow at all to be at detectable levels. So, the bag might appear yellow even when bacteria is present.
32. How might doing this experiment on a very hot day (over 90° F) affect the results?

The heat might kill bacteria present and result in a negative test, which would be inaccurate.
Teacher’s Preparatory Guide

Conclusion

33. In your data table, notice the trend of color throughout the period of time that you tested. What conclusions can you draw about how quickly or slowly the bacteria grew? What can you conclude about how much bacteria were initially present in the sample? Record these conclusions in the data table.

34. Is the water safe for human consumption? **No, my water was not safe for human consumption.**

35. Based on your water analysis, what would your team recommend to the ranch owner? Explain your answer. *(Hint: review your answer in step 32.)* **People should not drink the water right out of the stream. First, they should boil the water. Alternatively, a filter would probably remove disease-causing bacteria.**
Inquiry-based interlude
Water Filtration and Nanoparticles

March 1, 2007

Dear Team:

Thank you for your recommendation to get a filter for the stream on our ranch.

To save money, I would like to have you build a filter that will purify the water in the stream so that people on my ranch can drink the water.

Also, please test the filtered water to make sure that it is safe to drink.

Sincerely,

Manuel Ranchero

Teaching Strategies:
Ask:
How would you modify the procedure in this lab that would allow you to test the quality of the filtered water? Why would you make this change?

Example answer: I would also clean the filter faucet/tube with an alcohol swab to make sure that bacteria is not introduced to the water sample.

How would you modify the question?

Question: Does the filter remove disease-causing pathogens from the water?